Let $F$ be a field and let $p(x)\in F[x]$ be irreducible over $F$.If $a$ is a zero of $p(x)$ in some extension $E$ of $F$,then F[x]/Ker($\phi$)$\simeq F(a)$ .Furthermore,if $deg(p(x))=n$,then every member of $F(a)$ can be uniquely expressed in the form $$C_{n-1}a^{n-1}+C_{n-2}a^{n-2}+C_{n-3}a^{n-3}...+C_{1}a^{1}+C_0$$ Where,$C_0,C_1,C_2,...,C_{n-1}\in F$
Consider $\phi:F[x]\rightarrow F(a)$ given by $\phi (f(x))=f(a)$.(How this map is well defined?)
$\phi$ is a ring homomorphism.
Let $f(x),g(x)\in F[x]$.
$\phi(f(x)+g(x))=\phi((f+g)(x))=(f+g)(a)=f(a)+g(a)=\phi(f(x))+\phi (g(x))$.
&
$\phi(f(x)*g(x))=\phi((f*g)(x))=(f*g)(a)=f(a)*g(a)=\phi(f(x))*\phi (g(x))$.
Hence,$\phi $ is a ring homomorphism.
Claim:$Ker(\phi)=<p(x)>$
Since,$\phi(p(x))=p(a)=0\implies p(x)\in Ker(\phi)\implies <p(x)>\subset Ker(\phi)$.
Since,$p(x)\in F[x]$ is irreducible.So, is a maximal ideal.Also Ker($\phi$) $\neq$ $F[x]$ as $1$ belong to $F[x]$ but does not belongs to Ker($\phi$).
Hence,$Ker(\phi)=<p(x)>$
Since, $\phi:F[x]\rightarrow F(a)$ is a ring homomorphism with Ker($\phi$).Then by First Isomorphism theorem on Rings,we have
F[x]/Ker($\phi$)$\simeq F(a)$ .
Queries
-Is this proof correct upto here?
- How to prove the if $deg(p(x))=n$,then every member of $F(a)$ can be uniquely expressed in the form $$C_{n-1}a^{n-1}+C_{n-2}a^{n-2}+C_{n-3}a^{n-3}...+C_{1}a^{1}+C_0$$ Where,$C_0,C_1,C_2,...,C_{n-1}\in F$?
If $\phi:F[x]\rightarrow F(a)$ is a ring homomorphism,then is it always true that $F[x] \simeq \phi (F[x])$?
How $\phi (F[x])$ contains both $F$ and $a$?
- How {$1,a,a^2,...,a^{n-1}$} is a basis for $F(a)$ over $F$?