Find Square root of Matrix $A=\begin{bmatrix} 1 &2 \\ 3&4 \end{bmatrix}$ without using concept of Eigen Values and Eigen Vectors
I assumed its square root as $$B=\begin{bmatrix} a &b \\ c&d \end{bmatrix}$$
hence
$$B^2=A$$ $\implies$
$$\begin{bmatrix} a^2+bc &b(a+d) \\ c(a+d)&d^2+bc \end{bmatrix}=\begin{bmatrix} 1 &2 \\ 3&4 \end{bmatrix}$$
So
$$a^2+bc=1 \tag{1}$$
$$b(a+d)=2 \tag{2}$$
$$c(a+d)=3 \tag{3}$$
$$d^2+bc=4 \tag{4}$$ From $(2)$ and $(3)$ we get
$$\frac{b}{c}=\frac{2}{3}$$
Let $b=2k $ and $c=3k$ Then
$$a^2=1-6k^2$$ and $$d^2=4-6k^2$$ So
$$B=\begin{bmatrix} \sqrt{1-6k^2} &2k\\ 3k&\sqrt{4-6k^2} \end{bmatrix}$$
So
$$B^2=\begin{bmatrix} 1 &2k \left(\sqrt{1-6k^2}+\sqrt{4-6k^2}\right) \\ 3k \left(\sqrt{1-6k^2}+\sqrt{4-6k^2}\right)&4 \end{bmatrix}=\begin{bmatrix} 1 &2 \\ 3&4 \end{bmatrix}$$
Now we have to solve for $k$ using equation
$$ \left(\sqrt{1-6k^2}+\sqrt{4-6k^2}\right)=\frac{1}{k} \tag{5}$$ Also
$$\left(\sqrt{1-6k^2}+\sqrt{4-6k^2}\right) \times \left(\sqrt{4-6k^2}-\sqrt{1-6k^2}\right)=3$$ So from $(5)$
$$\left(\sqrt{4-6k^2}-\sqrt{1-6k^2}\right)=3k \tag{6}$$
Subtracting $(6)$ from $(5)$ we get
$$2\sqrt{1-6k^2}=\frac{1}{k}-3k$$ Squaring Both sides we get
$$33k^4-10k^2+1=0$$ we get
$$k^2=\frac{5 \pm i \sqrt{8}}{33}$$ From this we get $k$. is there any other simpler way to find ?