these are my toughs:
$$z^2 = 1 + 2i \Longrightarrow (x+yi)(x+yi) = 1 + 2i$$
so: $x^2-y^2 = 1$ and $2xy = 2$
then i got that $x = 1/y$ but i cant continue to find the real- and imaginary part of z anymore. Appriciated any help
these are my toughs:
$$z^2 = 1 + 2i \Longrightarrow (x+yi)(x+yi) = 1 + 2i$$
so: $x^2-y^2 = 1$ and $2xy = 2$
then i got that $x = 1/y$ but i cant continue to find the real- and imaginary part of z anymore. Appriciated any help
In general, we have this
Lemma: If $z=a+ib \in \mathbb{C}$, with $a,b\in\mathbb{R}$, then $$ w = \sqrt{\frac{|z|+a}{2}} + i\epsilon\sqrt{\frac{|z|-a}{2}},$$ where $\epsilon =\pm 1$ according to $b=\epsilon|b|$, satisfies $w^2 = z$.
Proof: Let $w=x+iy$ satisfying $w^2=z$. Then $x^2 - y^2+2xyi =a+bi$. This equation is equivalent to the system $$ x^2 - y^2 = a \text{ ; } 2xy = b.$$ Since $w^2 = z$, we have $x^2+y^2 = |z|$ too, and we can conclude that $$x^2 = \frac{|z|+a}{2} \text{ ; } y^2 = \frac{|z|-a}{2}.$$ Choosing the positive square roots, we can write $$x = \sqrt{\frac{|z|+a}{2}} \text{ ; } y = \epsilon\sqrt{\frac{|z|-a}{2}}$$ satisfying $2xy = b$, i.e., $\epsilon = 1$ if $b > 0$ and $\epsilon = -1$ if $b < 0$.
You have $x^2 - y^2 = 1$ and $x = \frac{1}{y}$. Substitute the latter into the former to get $$\frac{1}{y^2} - y^2 = 1 \implies 1 - y^4 = y^2 \implies y^4 + y^2 - 1 =0.$$
You can solve the quadratic $u^2 + u -1 = 0$ giving solution $u = \frac{1}{2}(-1 \pm \sqrt{5})$. So you need to solve $y^2 = \frac{1}{2}(-1 + \sqrt{5})$ (since $y$ is real) which is now straightforward.
An alternative approach would be to use DeMoivre's Theorem. $1+2i=\sqrt{5}e^{i\arctan{2}}$ so $z=\sqrt[4]{5}e^{i\arctan 2/2}$ or $z=\sqrt[4]{5} e^{(i\arctan 2 +2\pi i)/2}$ If $\tan \theta =2, \tan \frac{\theta}{2} = \frac{2}{1+\sqrt{5}}$ giving $$z=\sqrt[4]{5}\frac{1+\sqrt{5}}{\sqrt{10+2\sqrt{5}}}+i\sqrt[4]{5}\frac{2}{\sqrt{10+2\sqrt{5}}}$$ The other root being $-z$.
\begin{align} z^2 = 1 + 2i & = |1+2i|(\cos\alpha+i\sin\alpha) \text{ where } \tan \alpha = \frac 2 1 \\[10pt] & = \sqrt{1^2+2^2} (\cos\alpha+i\sin\alpha) = \sqrt 5 (\cos\alpha+i\sin\alpha) \end{align} Therefore $$ z = \pm\left( \sqrt{\sqrt 5} \right)\left( \cos\frac\alpha2 + i \sin\frac\alpha 2 \right). $$