By Frullani's theorem
$$ \log\frac{n+1}{n}=\int_{0}^{+\infty}\frac{e^{-nx}-e^{-(n+1)x}}{x}\,dx \tag{1}$$
and since $\frac{1}{n}=\int_{0}^{+\infty}e^{-nx}\,dx = \frac{1}{n}$, by the dominated convergence theorem we get
$$\begin{eqnarray*} \sum_{n\geq 1}\left(\frac{1}{n}-\log\frac{n+1}{n}\right) &=& \int_{0}^{+\infty}\left(1-\frac{1-e^{-x}}{x}\right)\sum_{n\geq 1}e^{-nx}\,dx\\&=&\int_{0}^{+\infty}\left(1-\frac{1-e^{-x}}{x}\right)\frac{dx}{e^x-1}\\&=&\int_{0}^{+\infty}\left(\frac{1}{e^x-1}-\frac{1}{xe^x}\right)\,dx \tag{2}\end{eqnarray*}$$
where the function $g(z)=\frac{1}{e^z-1}-\frac{1}{ze^z}$ is regular in a right neighbourhood of the origin and has an exponential decay as $z\to +\infty$, hence it belongs for sure to $L^1(\mathbb{R}^+)$, implying that the original series is convergent. Additionally, the inequality
$$ \frac{1}{2}e^{-z}\leq \frac{1}{e^z-1}-\frac{1}{ze^z} \leq \left(\frac{1}{2}+\frac{z}{12}\right)e^{-z} \tag{3}$$
implies that
$$ \sum_{n\geq 1}\left(\frac{1}{n}-\log\frac{n+1}{n}\right)\in \left[\frac{1}{2},\frac{7}{12}\right].\tag{4}$$