-1

How do I compute the sum $$\sum_{k=0}^{\infty} (-1)^k (k+1) r^k$$ for $r \in [0,1)$? I know that the answer is $\frac{1}{(1+r)^2}$, but have no idea how to get there or how to even start. I know that $\sum_0^{\infty} (-1)^kr^k = 1/(1+r),$ but what to do with the $(k+1)$ I do not know.

Did
  • 279,727
bwen95
  • 1

2 Answers2

2

When you see a group like $(k+1)r^k$ you should think $(r^{k+1})'$

Thus for $|r|<1$ we have

$\displaystyle\sum\limits_{k=0}^{\infty}(-1)^k(k+1)r^k=-\bigg(\sum\limits_{k=0}^{\infty}(-1)^{k+1}r^{k+1}\bigg)'=-\bigg(\sum\limits_{k=1}^{\infty}(-r)^{k}\bigg)'=-\bigg(\frac{-r}{1+r}\bigg)'=\frac{1}{1+r}-\frac{r}{(1+r)^2}=\frac 1{(1+r)^2}$

zwim
  • 28,563
0

$S=\sum_{k=0}^{\infty} (-1)^k (k+1) r^k = 1-2r+3r^2-4r^3+\cdots+(-1)^k(k+1)r^k+\cdots$

$S^*=\int Sdr= r-r^2+r^3-r^4+\cdots+(-1)^kr^{k+1}+\cdots+C=\frac{r}{1+r}+C=1-\frac{1}{1+r}+C$

$S=(S^*)'=\frac{1}{(1+r)^2}$.

farruhota
  • 31,482