Let $A_1,A_2,\cdots,A_q$ be the diagonal blocks of $A$, and $a_{1,1},a_{1,2},\cdots,a_{1,n_1},a_{2,1},a_{2,2},\cdots,a_{2,n_2},\cdots,a_{q,1},a_{q,2},\cdots,a_{1,n_q}$ the diagonal elements of $B$, then the inverse of the sum would simply be a diagonal block matrix with blocks: ${(A_i+diag(a_{i,1},\cdots,a_{i,n_i}))}^{-1}$ for $i\in(1,2,\cdots,q)$.
So the problem is reduced to finding the inverse of the sum of a matrix and a diagonal matrix. Fortunately, $A$ is symmetric positive definite, so each $A_i$ diagonalizable, hence, we can write it as follows:
$$
A_i=P_iD_i{P_i}^{T}=P_i\begin{bmatrix}
\lambda_{i,1} & 0 & 0 & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \ddots & & 0 \\\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & & \ddots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 0 & \lambda_{i,n_{i}}
\end{bmatrix}{P_i}^{T}
$$
Where $\lambda_{i,1},\cdots,\lambda_{i,n_{i}}$ are the eigenvalues of $A_i$, hence:
$$
A_i+diag(a_{i,1},\cdots,a_{i,n_i})=P_i\begin{bmatrix}
\lambda_{i,1}+a_{n_i} & 0 & 0 & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \ddots & & 0 \\\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & & \ddots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 0 & \lambda_{i,n_{i}}+a_{i,n_i}
\end{bmatrix}{P_i}^{T}
$$
Since $A_i$ and $B$ are symmetric positive definite, then $\lambda_{i,j}+a_{i,j}\neq 0$, so :
$$
{(A_i+diag(a_{i,1},\cdots,a_{i,n_i}))}^{-1}=P_i\begin{bmatrix}
\frac{1}{\lambda_{i,1}+a_{i,1}} & 0 & 0 & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \ddots & & 0 \\\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & & \ddots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 0 & \frac{1}{\lambda_{i,n_{i}}+a_{i,n_i}}
\end{bmatrix}{P_i}^{T}=P_iD_i{P_i}^{T}
$$
Hence the inverse of ${(A+B)}^{-1}$ is a block diagonal matrix with diagonal elements being the matrices above.
You can rewrite that as
$$
{(A+B)}^{-1}=\begin{bmatrix}
P_1 & 0 & 0 & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \ddots & & 0 \\\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & & \ddots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 0 & P_q
\end{bmatrix}\times\begin{bmatrix}
D_1 & 0 & 0 & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \ddots & & 0 \\\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & & \ddots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 0 & D_q
\end{bmatrix}\times\begin{bmatrix}
{P_1}^{T} & 0 & 0 & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \ddots & & 0 \\\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & & \ddots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 0 & {P_q}^{T}
\end{bmatrix}
$$