I just wanted to know how I can find the length of a curve given by $f(x) = x^2$ from $x=0$ to $x=1$.
For appproximation, the length is a bit larger than the hypotenuse of isosceles right triangle with the shorter side being 1 long. It's definitely less than the sum of two shorter sides. Thus, if we represent the length by $L$, the following relationship is expected: $\sqrt 2 < L < 2$
I now regard $L$ as the accumulation of hypotenuses of infinitestimally small right triangles around $f(x)$. Since $f'(x)=2x$, the general right triangle is something like this: If $x$ goes very slightly down the $x$-axis ($\Delta x$), the the $y$ value goes upwards for $2x\Delta x$.
Thus the hypontenuse is the square root of the following: $(\Delta x)^2+(2x\Delta x)^2$. The hypotenuse is: $(\Delta x) {( 4x^2 + 1)^{1/2}}$
Since $L$ has been defined as the accumulation of these hypotenuses, it is: $L = \int_0^1 ( 4x^2 + 1)^{1/2} dx$.
I am stuck just here. Could someone tell me if my chain of thoughts so far is right and how I can go from here? I don't know how to calculate the integral of a function that contains another function in it.
Thanks!!