Summation: How does$$\begin{align*} & \frac 12\sum\limits_{k=1}^n\frac 1{2k-1}+\frac 12\sum\limits_{k=1}^n\frac 1{2k+1}-\frac 12\sum\limits_{k=1}^n\frac 1k+\frac n{2n+1}\tag1\\ & =\sum\limits_{k=1}^n\frac 1{2k-1}-\frac 12\sum\limits_{k=1}^n\frac 1k\tag2\\ & =\sum\limits_{k=1}^{2n}\frac 1k-\sum\limits_{k=1}^n\frac 1k=\sum\limits_{k=1}^n\frac 1{k+n}\tag3\end{align*}$$ Given that$$\sum\limits_{k=1}^n\frac 1{(2k)^3-2k}=\frac 12\sum\limits_{k=1}^n\frac 1{2k+1}+\frac 12\sum\limits_{k=1}^n\frac 1{2k-1}-\frac 12\sum\limits_{k=1}^n\frac 1k$$
I'm not sure how they got from the first step to the second. The $\tfrac 12\sum\limits_{k=1}^n\tfrac 1k$ didn't change, so that must mean that$$\frac 12\sum\limits_{k=1}^n\frac 1{2k-1}+\frac 12\sum\limits_{k=1}^n\frac 1{2k+1}+\frac n{2n+1}=\sum\limits_{k=1}^n\frac 1{2k-1}$$But I don't see how. I tried expanding the LHS, and rearranging to get the RHS, but that didn't go far.$$\begin{align*}\frac 12\left(\sum\limits_{k=1}^n\frac 1{2k-1}+\sum\limits_{k=1}^n\frac 1{2k+1}\right)+\frac n{2n+1} & =\frac 12\left(\sum\limits_{k=1}^n\frac 1{2k-1}+\frac 1{2k+1}\right)+\frac n{2n+1}\\ & =\frac 12\sum\limits_{k=1}^n\frac {4k}{4k^2-1}+\frac n{2n+1}\\ & =2\sum\limits_{k=1}^n\frac k{(2k)^2-1}+\frac n{2n+1}\end{align*}$$I feel like I'm close, but I just can't seem to finish it. I believe that you'll need to use a summation identity.
Questions:
- How do you get from step $(1)$ to step $(2)$?
- How do you get from $(2)$ to $(3)$
- Is there a PDF that lists all the summation rules and identities?