It looks like you got a wrong identity.
Similar to/Extend Mehta's answer, use the identities:
$$\begin{aligned}\cos(2\alpha)+\cos(2\beta) &= 2\cos(\alpha+\beta)\cos(\alpha-\beta),\\
&= -2\cos(\gamma)\cos(\alpha-\beta)
\end{aligned}$$
and
$$\cos(2\gamma)\color{\red}+1 = 2 \cos^2\gamma.$$
Adding them up we obtain
$$\begin{aligned}
\cos(2\alpha)+\cos(2\beta)+\cos(2\gamma) +1 &= -2\cos\gamma\cos(\alpha-\beta)+2\cos^2\gamma\\
&= -2\cos\gamma(\cos(\alpha-\beta)+\cos(\alpha+\beta))\\
&= -4\cos\gamma\cos\alpha\cos\beta.
\end{aligned}$$
So the identity we have here is
$$\cos(2\alpha)+\cos(2\beta)+\cos(2\gamma)+1 = - 4 \cos\alpha\cos\beta\cos\gamma,\tag{1}$$
which is different from what you ask for. We can check by specific values of $(\alpha,\beta,\gamma)$. For example $(\pi/2,\pi/4,\pi/4)$ turns (1) into $0=0$ while your identity would be $-1=1$.
\Name \name
for the upper and lower cases, like\Gamma \gamma
$\Gamma, \gamma$. It's outlined in the tutorilal. – Em. May 25 '17 at 02:19