Are there any $n \times n$ $(n \ne 1)$ matrices satisfying $$Det(A+B)=Det(A)+Det(B)$$
Trivially the above equation is True for either $A=O$ or $B=O$ or $ A=B=O$
For $2 \times 2$ matrix i have tried as follows:
Let $$A=\begin{bmatrix} a &b \\ c & d \end{bmatrix}$$ and $$B=\begin{bmatrix} p &q \\ r &s \end{bmatrix}$$ Then we have
$$Det(A+B)=(a+p)(d+s)-(b+q)(c+r)$$
$$Det(A)+Det(B)=ad-bc+ps-rq$$ Equating both we get
$$as+pd=br+qc$$ which is satisfied by infinite values of $a,b,c,d,p,q,r,s$
One such pair is
$$A=\begin{bmatrix} 2 &10 \\ 2 & 3 \end{bmatrix} $$ and
$$B=\begin{bmatrix} 4 &1 \\ 2 &5 \end{bmatrix}$$
is there any general way to find the matrices of higher order?