Claim
Let $S, T\subset$ ordered field $F$
Let $P_F=\{a\in F: a \gt 0\}$
Let $ST = \{st \in P_F\mid s \in S, t\in T\}$ Then,
$\forall S,T \in P_F\;\;\;$$\sup ST = \sup S \sup T$
Proof
Let $\sup S=\alpha,\; \sup T=\beta$ Then
$\forall s \in S$ and $\forall t \in T$, $\;st \le \alpha\beta$ Thus
$\alpha \beta$ is an upper bound of $ST$
Now, take$\;\;\gamma\in P_F$ s.t. $\gamma \lt \alpha \beta$
Let $e = \alpha \beta - \gamma \gt 0$ Then
${e \over 2}\gt 0$ Thus
$\alpha - {e \over 2} \lt \alpha$ and $\alpha - {e \over 2}$ is not least upper bound of $S$.
Thus $ \exists s \in S $ s.t. $\alpha - {e \over 2} \lt s$
Similar to the case of $\alpha$,
$\exists t \in T $ s.t. $\beta - {e \over 2} \lt t \;$ Then
I am stuck in here.
I would like to show that $\gamma \lt st$ with above inequalities.
any advice?