Can somebody please check my working? The variable $y$ depends on $x$ and $x$ and $t$ are related by $x=e^t$
Show that $x\frac{dy}{dx}=\frac{dy}{dt}$
$$x=e^t$$ $$dx=e^t dt$$ $$\frac{dx}{dt}=e^t=e^t\times1=e^t \times\frac{dy}{dy}$$ $$\frac{dx}{dt}\times\frac{dy}{dx}=x\frac{dy}{dy}\times\frac{dy}{dx}$$ $$\frac{dy}{dt}=x\frac{dy}{dx}$$
Is this correct?