Prove that $1+p$ is an element of order $p^{n-1}$ in $(\Bbb Z/p^n\Bbb Z)^\times$, where $p$ is an odd prime and $n$ a positive integer.
Yeah, I'm aware of this:
Showing $1+p$ is an element of order $p^{n-1}$ in $(\mathbb{Z}/p^n\mathbb{Z})^\times$
, but I want to construct a proof using the BINOMIAL THEOREM. Since $x^{p^n}=1$ implies $|x|=p^m$ for some $m\le n$, if we can show that $(1+p)^{p^{n-1}}\equiv1 \space(mod \space p^n)$ and $(1+p)^{p^{n-2}}\not\equiv1 \space(mod \space p^n)$, then the result follows.
Let's take an example: let $p=7$, $n=5$
$(1+7)^{7^{5-1}}=(1+7)^{7^4}=1+C^{7^4}_17+C^{7^4}_27^2+C^{7^4}_37^3+C^{7^4}_47^4+C^{7^4}_57^5+..$
$\equiv1+C^{7^4}_17+C^{7^4}_27^2+C^{7^4}_37^3+C^{7^4}_47^4$
$\equiv1+(7^4i_1)7+(7^3i_2)7^2+(7^2i_3)7^3+(7i_4)7^4$
$\equiv0 \space (mod \space 7^5)$ for some integers $i_1,i_2,i_3,i_4$
so it seems I have to show that $p^{n-k}|C^{p^{n-1}}_k$, but I have no idea how to. Can somebody help? Thanks!