If $ord_ma=3$ and if $a^n\equiv 1 \pmod{m}$ for some $n\ge1$, explain why $3|n$.
Attempt at solution:
We know that $ord_ma=3$ means $a^3\equiv 1 \pmod{m}$. Therefore, $n$ is a multiple of $3$, because $a^{3n}\equiv 1 \pmod{m}$.
If $ord_ma=3$ and if $a^n\equiv 1 \pmod{m}$ for some $n\ge1$, explain why $3|n$.
Attempt at solution:
We know that $ord_ma=3$ means $a^3\equiv 1 \pmod{m}$. Therefore, $n$ is a multiple of $3$, because $a^{3n}\equiv 1 \pmod{m}$.
There are three possibilities: $n = 3k$ or $n = 3k + 1$ or $n = 3k + 2$.
What happens if $n = 3k + 1$? Then $a^n = a^{3k+1} = (a^3)^k a \equiv 1^k a \equiv a \mod m$. Since we assumed $a^n \equiv 1 \mod m$, this implies $a \equiv 1 \mod n$. But this is not possible, since $ord_m a = 3$. Hence $n$ cannot be of the form $3k + 1$.
Similarly, show that $n$ cannot be of the form $3k+2$. Then the only possibility is that $n = 3k$, which proves the statement.
Hint $\ $ By division, $\rm\:n = 3\, q + r,\,\ 0\le r< 3,\:$ so $\rm\: 1 \equiv a^n \equiv (a^3)^q a^r \equiv 1^q a^r \equiv \color{#C00}{a^r}\:$ yields a contradiction if $\rm\:r\ne 0\:$ since then $\rm\:r<3 \:\Rightarrow\: r = 2\ (\Rightarrow\: \color{#C00}{a^2}\equiv 1)$ or $\rm\:r = 1\ (\Rightarrow \rm\:\color{#C00}{a^1}\equiv 1),\:$ contra $\rm\,a\,$ has order $3$.
Remark $\ $ More conceptually, the set $\cal O$ of integers $\rm\,n\,$ with $\rm\:a^n\equiv 1\:$ is closed under subtraction, so, by a fundamental theorem, every element of $\cal O$ is a multiple of the least positive element of $\cal O$.
The reasoning is incomplete. First note that $\text{ord}_m(a)=3$ means that $a^3\equiv 1\pmod{m}$ and for any positive integer $k \lt 3$, we have $a^k\not\equiv 1\pmod{m}$.
Now we proceed to show that if $a^n\equiv 1\pmod{m}$, where $n\ge 1$, then $3$ divides $n$.
Suppose to the contrary that $3$ does not divide $n$. Then if we attempt to divide $n$ by $3$, we get a non-zero remainder. More precisely, $n=3q+k$ where $k=1$ or $k=2$. Then $$a^n=a^{3q+k}=(a^3)^qa^k.$$ But since $a^3\equiv 1\pmod{m}$, it follows that $(a^3)^q\equiv 1\pmod{m}$, and therefore $a^n\equiv a^k\pmod{m}$. Thus $a^k\equiv 1\pmod{m}$. Since $k=1$ or $k=2$, this contradicts the fact that $a$ has order $3$ modulo $m$.