Find an irreducible polynomial $p(X)$ of degree $3$ in $\mathbb{F}_3[X]$.
$x^3 -x-1$ is irreducible over $\mathbb{F}_3$ since it has no roots in $\mathbb{F}_3$.
Compute the multiplicative inverse of $X+1+\langle p(X) \rangle$ in $\mathbb{F}_3[X]/ \langle p(X) \rangle$.
$x^3 -x-1=(x-1)(x^2+x)-1$
$(x-1)(x^2)=1(\mod x^3 -x-1)$
Suppose that $\langle r(X) \rangle \in \mathbb{F}_3[X]$ is chosen such that $r(X)+\langle p(X) \rangle$ is a primitive element of $_3[X]/\langle p(X) \rangle$. Show that:
$(r(X)+\langle p(X) \rangle)^{-1}=(r(X)+\langle p(X) \rangle)^{25} $
Any clue for this point, please ?