Find the value of $\cos 1^\circ + \cos 2^\circ + \cos 3^\circ +.....+\cos 180^\circ $
My Attempt: $$=\cos 1^\circ + \cos 2^\circ + \cos 3^\circ +....+\cos 180^\circ $$ $$= \cos 1^\circ + \cos 2^\circ + \cos 3^\circ +....-1$$
How do I complete it?
Find the value of $\cos 1^\circ + \cos 2^\circ + \cos 3^\circ +.....+\cos 180^\circ $
My Attempt: $$=\cos 1^\circ + \cos 2^\circ + \cos 3^\circ +....+\cos 180^\circ $$ $$= \cos 1^\circ + \cos 2^\circ + \cos 3^\circ +....-1$$
How do I complete it?
Your question is equal to $$\sum_{k=1}^{89}(\cos(k)) + \cos(90)+ \sum_{k=91}^{179}(\cos(k)) + \cos(180)$$
Simplifying down, we get $$\sum_{k=1}^{89}(\cos(k) + \cos(180-k)) + \cos(90) + \cos(180)$$
Notice how the summation now cancels to zero, leaving us with $$\cos(90) + \cos(180) = 0 + -1 = -1$$
– John Lou May 22 '17 at 02:12