For $2 \leqslant k \leqslant m$, let
$$f_{k,m} = \sum_{n = k}^{m} \frac{1}{\sqrt{n}\,\log n}\cdot e_n,$$
where $e_n$ is the sequence with $e_n(i) = 0$ if $i\neq n$ and $e_n(n) = 1$.
We have
$$\lVert f_{k,m}\rVert^2 \leqslant \sum_{n = k}^{\infty} \frac{1}{n(\log n)^2} \xrightarrow{k\to\infty} 0,$$
and
$$\lim_{m\to\infty} \sum_{n = k}^m \frac{1}{\sqrt{n}\,\log n}\cdot \frac{1}{\sqrt{n}} = +\infty.$$
Let $n \in \mathbb{N}\setminus \{0\}$. We will show that $e_n$ belongs to the closure of the given subspace. Thus let $\varepsilon > 0$. Choose $k > n$ such that $\lVert f_{k,m}\rVert < \varepsilon$ for all $m \geqslant k$. Then choose $m \geqslant k$ such that
$$s(k,m) := \sum_{r = k}^m \frac{1}{r\log r} > \frac{1}{\sqrt{n}}.$$
Then
$$e_n - \frac{1}{s(k,m)\sqrt{n}} f_{k,m}$$
belongs to the subspace, and
$$\biggl\lVert \frac{1}{s(k,m)\sqrt{n}}f_{k,m}\biggr\rVert < \frac{\varepsilon}{s(k,m)\sqrt{n}} < \varepsilon.$$
Since the subspace spanned by the $e_n$ is dense in $\ell_2$, the assertion follows.