How to calculate $5^{2003}$ mod $13$
using fermats little theorem
5^13-1 1 mod 13
(5^12)^166+11 mod 13
a+b modn=(a modn + b modn) modn
(1+11mod13)mod13
12 mod 13 = 12
why answer is 8 ?
how do we calculate this
thanks
How to calculate $5^{2003}$ mod $13$
using fermats little theorem
5^13-1 1 mod 13
(5^12)^166+11 mod 13
a+b modn=(a modn + b modn) modn
(1+11mod13)mod13
12 mod 13 = 12
why answer is 8 ?
how do we calculate this
thanks
All modulo 13,
$$5^{2003} \equiv (5^{2})^{1001} (5)$$
$$\equiv (-1)^{1001}(5)$$
$$\equiv -5$$
$$\equiv 8$$
$5^{13-1}= 5^{12} \equiv 1 \mod 13$
$5^{2003} = 5^{12*166 +11} = (5^{12})^{166}*5^{11} \equiv 5^{11} \mod 13$
$5^{11}*5 = 5^{12}\equiv 1 \mod 13$
So if $5^{11} \equiv x \mod 13$ then $5^{11}$ is a solution to $5x \equiv 1 \mod 13$.
....
$5x \equiv 1,14,27,40 \mod 13$ so $5^{11} \equiv x\equiv 8 \equiv -5 \mod 13$.
.....
Or we could do $5^2 = 25 \equiv -1 \mod 13$ so $5^4 \equiv 1 \mod 13$ so $5^{11} \equiv 5^3 \equiv -5 \equiv 8 \mod 13$.
......
Those were trial and error. If we had to, we could use Euclid's algorithm to solve
$5x = 13k + 1$.
$5x = 10k + 3k + 1$
$5(x - 2k) = 3k + 1$. Let $v = x - 2k$
$5v = 3k + 1$
$3v + 2v = 3k + 1$
$3(v - k) + 2v = 1$ Let $w = v -k$
$3w + 2v = 1$
$w + 2(w+v) = 1$. Let $z = w+v$
$w + 2z = 1$. Let $z = 0; w = 1$
$z = w+v \implies 0 = 1 + v\implies v = -1$
$w = v-k\implies 1= - 1 -k\implies k = -2$
$v = x - 2k \implies -1 = x + 4 \implies x = -5$.
So $5^{11} \equiv x \equiv- 5 \equiv 8 \mod 13$.