We use the following lemma:
Let $(S,\mathcal A)$ a measurable space, and $\mu$, $\nu$ two finite measures. We have $\nu\ll\mu$ if and only if for all $\varepsilon>0$, we can find $\delta>0$ such that if $A\in\mathcal A$ and $\mu(A)\leq\delta$ then $\nu(A)\leq \varepsilon$.
Let $\{E_i\}\subset\mathcal M_1$, $\{F_j\}\subset \mathcal M_2$, where $\mu_1(E_i)+\nu_1(E_i)$ and $\mu_2(F_j)+\nu_2(F_j)$ are finite for all $i,j$ and $\bigcup_{i=1}^{+\infty}E_i=X_1$, $\bigcup_{j=1}^{+\infty}F_j=X_2$. Define the finite measures $\mu^{(i,j)}(S):=\mu_1\otimes \mu_2(E_i\times F_j\cap S)$, and $\nu^{(i,j)}(S):=\nu_1\otimes \nu_2(E_i\times F_j\cap S)$. We just have to show that $\nu^{(i,j)}\ll\mu^{(i,j)}$.
Let $\mu_1^{i}(S):=\mu_1(E_i\cap S)$ and similarly for the other measures.
Let $\varepsilon>0$, $i,j$ fixed integers and $\sqrt\delta$ working for $\varepsilon$.
As $\nu^{(i,j)}+\mu^{(i,j)}$ is finite, if $\mu^{(i,j)}(S)\leq \delta/2$, we can find, by this result, $S':=\bigsqcup_{k=1}^NA_k\times B_k$ where $$\sum_{k=1}^N\nu_1(E_i\cap A_k)\nu_2(F_j\cap B_k)+\sum_{k=1}^N\mu_1(E_i\cap A_k)\mu_2(F_j\cap B_k)\leq \delta.$$
Indeed, we take $S'$ of the previous form such that $(\nu^{(i,j)}+\mu^{(i,j)})(S\Delta S')\lt\delta/2$. This implies that $$(\nu^{(i,j)}+\mu^{(i,j)})(S')\leqslant (\nu^{(i,j)}+\mu^{(i,j)})(S)+\delta/2\leqslant \delta.$$
Let $I:=\{k\in [N],\mu_1(E_i\cap A_k)\leq \sqrt \delta\}$, and $I':=\{k\in [N],\mu_2(F_j\cap B_k)\leq \sqrt \delta\}$. Then $I\cup I'=[N]$, which gives
\begin{align}
\nu^{(i,j)}(S)&\leq \delta+\nu^{(i,j)}(S')\\
&=\delta+\varepsilon\sum_{k\in I}\nu_2(F_j\cap B_k)+\varepsilon\sum_{k\in I'}\nu_1(E_i\cap A_k)\\
&\leq \varepsilon(1+\mu_1(E_i)+\mu_2(F_j)),
\end{align}
as we can assume WLOG $\delta\leq\varepsilon$.