Suppose that R>0, $x_0>0$, and $$x_{n+1}= \frac{1}{2} (\frac{R}{x_n}+x_n), n \geq0$$
Prove by induction for $n \geq 1$, $$x_n>x_{n+1} > \sqrt{R} $$ and $$ x_n- \sqrt{R} \leq \frac{1}{2^n} \cdotp \frac {(x_0- \sqrt{R})^2} {x_0} $$
I have written pages on this, getting more and more lost. I considered first 2 propositions:
$P_n: x_n>x_{n+1} > \sqrt{R}$
$G_n: x_n- \sqrt{R} \leq \frac{1}{2^n} \cdotp \frac {(x_0- \sqrt{R})^2} {x_0} $
And I looked at the first one $P_n$:
$P_1: x_1>x_2 > \sqrt{R} \rightarrow x_1 > \frac{1}{2} (\frac{R}{x_1}+x_1)= \frac{R+{x_1}^2}{2x_1}> \sqrt{R}$
$P_2: x_2>x_3 > \sqrt{R} \rightarrow$
$$\frac{R+{x_1}^2}{2x_1}> \frac{R+{x_2}^2}{2x_2}> \sqrt{R}$$
$$\frac{R+{x_1}^2}{2x_1}> \frac{R+{\frac{R+{x_1}^2}{2x_1}}^2}{2(\frac{R+{x_1}^2}{2x_1})}> \sqrt{R}$$
I attempted to simplify with no satisfying result.
Am i going in the right direction? is there a different inductive approach more efficient?