Let's consider another example, and see if we can tease out what we want from our definition of equality and isomorphic.
One group is the rotations and reflections of a square which leave it in the same place it started (though the points inside may be moved about). The other group is generated by $2$ elements $a,b$, and follows the relations: $a^4 = e$, $b^2 = e$, and $ab = ba^3$. It turns out these two groups are isomorphic - we can identify $b$ with horizontal reflection, and $a$ with rotation by $\frac{\pi} 2$.. $b$ with vertical reflection and a with $-\frac{\pi} 2$. Further, if I draw a heart inside the square, I know what it means to reflect or rotate that heart. I can immediately apply the group operators for the first group. But what does it mean to apply $a$ to that heart?
Let's also look at a case where we can agree $2$ objects are equal. For example, $1 + 1 = 2$. The first sentence would have made just as much sense had I written "we can agree 1+1 objects are equal." (though linguistically horrific). The two representations, $2$ vs $1 + 1$, are interchangeable everywhere, and there's no new ambiguity from using one or the other. By this, I'd suspect that one would not say that the two groups I mentioned above are equal, but everyone would agree they're isomorphic.
Now, to return to the question for $\mathbb{Z}_n$ and $\mathbb{Z}/n\mathbb{Z}$. We agree they're certainly isomorphic, now we want to decide if they're equal. But first, a note on definitions. here and here both use $\mathbb{Z}_n$ and $\mathbb{Z}/n\mathbb{Z}$ for two different algebraic objects! Worse yet, they both note a third meaning for the notation $\mathbb{Z}_n$: the p-adics. Hence, to decide if they are different, we first need to agree on a definition for both. If we use yours, the first two of these links seem to suggest they're equal - but I can easily imagine a text defining the finite cyclic groups as $\mathbb{Z}_n$ and the equivalence classes as $\mathbb{Z}/n\mathbb{Z}$. Now, some sentances to consider (with ones definition of choice for $\mathbb{Z}_n$):
$[0]_5$ is a principle ideal. VS $0 + 5\mathbb{Z}$ is a principle ideal. (similarly for 'additive subgroup of $\mathbb{Z}$', or 'maximal ideal', etc)
$[k]_n$ is an equivalence class. VS $k + n\mathbb{Z}$ is an equivalence class.
$|k + n \mathbb{Z}|$ is infinite. VS $|[k]_n|$ is infinite.
$7$ is a member of $k + n \mathbb{Z}$. VS $7$ is a member of $[k]_n$
A few of these make me a bit nervous/uncomfortable - there seems like there could be some ambiguity between sending $[k]_n$ to $k + n \mathbb{Z}$ vs $-k + n \mathbb{Z}$ - as additive groups, these both look fine.
To answer this more concretely, one would need to know who asserted the two symbols were different, and their definitions of the two groups (as opposed to the most memorable definitions you've found).