Can you help me prove this number theory claim:
If p is a prime, p divides $a^2+b^2$ and p divides $a^2$, then p divides $b^2$
Thanks
Can you help me prove this number theory claim:
If p is a prime, p divides $a^2+b^2$ and p divides $a^2$, then p divides $b^2$
Thanks
Badjohn is right: If $kp=a^2+b^2$ and $mp=a^2$ for some integers $k$ and $m$, then $(k-m)p=b^2$.