Since you asked about the indefinite integral, I will introduce a couple of identities and definitions:
$${\rm li} (x) = \int_0^x \frac{dt}{\ln t} \tag{1}$$
$$\operatorname{li}(x)=\operatorname{Ei}(\ln{x}) \tag{2}$$
$$\operatorname{Ei}(x)=-\int_{-x}^{\infty}\frac{e^{-t}}t\,dt. \tag{3}$$
Where ${\rm li} (x)$ is the logarithmic integral, and $\operatorname{Ei}(x)$ is the exponential integral.
Start by using the substitution you attempted, it is a good one:
$$x=e^t \iff dx=e^t ~dt$$
Hence giving:
$$\int \frac{x^7-1}{\ln{x}}~dx=\int \frac{e^{7t}-1}{t}\cdot e^t~dt=\int \frac{e^{8t}-e^t}{t}~dt=\color{green}{\int \frac{e^{8t}}{t}~dt}-\color{blue}{\int \frac{e^t}{t}~dt}$$
Substituting $u=8t$ on the $\color{green}{\text{green}}$ integral and applying $(3)$, we have:
$$\int \frac{e^{8t}}{t}~dt=\int \frac{e^u}{u}~du=\operatorname*{Ei}(u)+c_1=\operatorname*{Ei}(8\ln{x})+c_1$$
The $\color{blue}{\text{blue}}$ integral is easy, we can apply $(3)$, then apply $(2)$.
$$\int \frac{e^t}{t}~dt=\operatorname*{Ei}(t)+c_2=\operatorname*{Ei}(\ln{x})+c_2=\operatorname*{li}(x)+c_2$$
Combining the two results, we obtain the desired result.
$$\bbox[5px,border:2px solid #C0A000]{\int \frac{x^7-1}{\ln{x}}~dx=\operatorname*{Ei}(8\ln{x})-\operatorname*{li}(x)+C}$$
Edit: Just to make the answer more slick, you can separate the integrals immediately:
$$\int \frac{x^7-1}{\ln{x}}~dx=\color{#0066ff}{\int \frac{x^7}{\ln{x}}~dx}-\color{#990000}{\int \frac{1}{\ln{x}}~dx}$$
For the $\color{#0066ff}{\text{light blue}}$ integral, we can substitute $x=e^{t/8}$ to obtain:
$$\int \frac{x^7}{\ln{x}}~dx=\int \frac{e^t}{t}~dt=\operatorname*{Ei}(t)+c_1=\operatorname*{Ei}(8\ln{x})+c_1$$
And for the $\color{#990000}{\text{red}}$ integral, we can just immediately apply $(1)$:
$$\int \frac{1}{\ln{x}}~dx=\operatorname*{li}(x)+c_2$$
Combining the two results gives the same answer as the previous approach.