For $x\ge1$, $f(x)\gt0$, so $f(x)$ is increasing if and only if
$$g(x)=\ln f(x)=x(\ln(x+\ln x)-\ln x)$$
is increasing, so we need only prove $g'(x)\ge0$ for $x\ge1$. In fact we have
$$\begin{align}
g'(x)&=(\ln(x+\ln x)-\ln x)+x\left({1+{1\over x}\over x+\ln x}-{1\over x} \right)\\
&=(\ln(x+\ln x)-\ln x)+\left({x+1\over x+\ln x}-1\right)\\
&=(\ln(x+\ln x)-\ln x)+{1-\ln x\over x+\ln x}\\
&=\int_x^{x+\ln x}{dt\over t}+{1-\ln x\over x+\ln x}\\
&\ge\int_x^{x+\ln x}{dt\over x+\ln x}+{1-\ln x\over x+\ln x}\\
&={\ln x\over x+\ln x}+{1-\ln x\over x+\ln x}\\
&={1\over x+\ln x}\gt0
\end{align}$$
The key step was using the integral definition of the natural logarithm and the decreasing nature of $1\over t$ to write
$$\ln(a+b)-\ln a=\int_a^{a+b}{dt\over t}\ge\int_a^{a+b} {dt\over a+b}={(a+b)-a\over a+b}={b\over a+b}$$