I need to find the resolvent kernel of $\phi(x)=f(x)+\int\limits_0^x \sin(x-t)\phi(t)\,dt$.
Differentiating both sides I get $$ \phi'(x) = f'(x) + \int_0^x \cos(x-t)\phi(t)\,dt. $$
And now I am stuck.
I have also tried the resolvent kernel sum method, ie. \begin{gather*} K(x,t) = K_1(x,t) = \sin(x-t) \\ K_2(x,t) = \int_0^x K(x,s)\cdot K(s,t)\,ds = x\cos(x-t)-\frac{1}{2}\sin(t)\cos(x) \end{gather*} and so on...