3

Let $A=(a_{ij})$ be a $n\times n$ matrix such that $a_{ij}=\min\{i,j\} , 1\leq i,j \leq n $. Find rank of $A$.

My work :

I think the rank is $n$.

Reason: Let $A_n=(a_{ij}) $. After subtracting the first row from the other rows I get $\det A_n=\det A_{n-1}=\cdots=\det A_1=1$. So $\det A_n=\det A=1$ must be invertible. Hence rank $=n $.

Is my solution correct ? If not provide an alternative solution. Thank you.

user26857
  • 52,094
Suman Kundu
  • 2,188
  • 2
    You can substract $(i-1)^{st}$ row from $i^{th}$ row and obtain a triangular matrix with only 1s in diagonal – JJR May 16 '17 at 21:53

0 Answers0