$$\lim_{x \to 0} \frac{\cos(\sin x)- \cos x}{x^4}$$
My approach
Using L'Hospital's rule we get
$$
\lim_{x \to 0}\frac{\sin x - \sin(\sin x)\cos x}{4x^3}
$$
Why can't we simplify this as,
$$ \begin{split} &\implies \lim_{x \to 0} \frac{\sin x}{x}\cdot\frac{1}{4x^2}-\frac{\sin(\sin x)\cdot(\sin x)}{(x\cdot\sin x)}\frac{\cos x}{4x^2}\text{ (dividing and multiplying sinx)} \\ &\implies \lim_{x \to 0}\frac{1-\cos x}{4x^2} \\ &=\frac 18 \end{split} $$ But the answer is $\frac 16$. Which I got by using L'Hospital's rule 2 more times.
Why is my simplification wrong?