we consider the problem $$ \begin{cases} y''+2y'+\lambda y=0\\ y'(0)=y(1)=0 \end{cases} $$ The question is to prouve that this problem admits eigenvalues $\lambda >1$.
I try to do the following: we put $\lambda-1=\alpha^2$ where $\alpha \in \mathbb{R}^\star_+$. Then, the general solution of the differential equation is $$ y(x)= e^{-x}[C_1 \cos(\alpha x) + C_2 \sin(\alpha x)] $$ Then using the limis conditions, we have: $$ y(1)=0=> C_1 \cos(\alpha) + C_2 \sin(\alpha)=0 $$ and $$ y'(0)=0 => C_1 = \alpha C_2 $$ Then combined the two, we obtaine $$ C_2 (\alpha \cos(\alpha)+ \sin(\alpha))=0 $$ Is it true? Please. And finally who's the eigenvalues of this problem? Please