I need help to understand, some steps of the proof of this theorem.
(Kolmogorov-M. Riesz-Fréchet) Let $\mathcal{F}$ be a bounded set in $L^p(\mathbb{R}^N)$ with $1\leq p < \infty$. Assume that
\begin{equation} \lim\limits_{|h|\longrightarrow 0 }\|\tau_hf-f\|_p=0 \ uniformly \; in \, f \in \mathcal{F}, \end{equation}
i.e $\forall \varepsilon >0 \; \exists \delta >0$ such that $\|\tau_hf-f\|_p<\varepsilon \; \forall f \in \mathcal{F}, \; \forall h \in \mathbb{R}^N$ with $|h|<\delta$. Then the closure of $\mathcal{F}_{|\Omega}$ is compact for any measurable set in $\Omega \subset \mathbb{R}^N$ with finite measure.
Well, you can find it in Haim Brezis, Functional Analysis, Sobolev Spaces and PDE. page 111
In step 1: We claim that \begin{equation} \|(\rho_n*f)-f\|_{L^p(\mathbb{R}^N)}\leq \varepsilon \ \forall f \in \mathcal{F}, \ \forall n > 1/n. \label{4.26_kolmogorov_23} \end{equation}
And we have, \begin{equation*} \begin{split} |(\rho_n*f)(x)-f(x)| &\leq \int |(f(x-y)-f(x))\rho_n(y)dy|\\ &\leq \left[ \int |(f(x-y)-f(x))|^p\rho_n(y)dy \right]^{1/p} \end{split} \end{equation*} By Hölder´s inequality
So, i can´t understand, how use the Hölder´s inequality in the last inequality, please help me!!