I think I've got it.
Let each $p_i$, $q_i \in \mathbb{N}$ be a power of a prime, not neccesarily distinct. $A$, $B$, $C$ are finite and Abelian which means that $A\cong \mathbb{Z}_{p_1}\oplus \mathbb{Z}_{p_2}\oplus\cdots \oplus \mathbb{Z}_{p_k}$, $B\cong \mathbb{Z}_{p_{k+1}}\oplus \mathbb{Z}_{p_{k+2}}\oplus\cdots \oplus \mathbb{Z}_{p_{k+n}}$, and $C\cong \mathbb{Z}_{q_{1}}\oplus \mathbb{Z}_{q_{2}}\oplus\cdots \oplus \mathbb{Z}_{q_{m}}$ for some $k$, $n$, $m\in \mathbb{N}$. So,
$$A\oplus B\cong \mathbb{Z}_{p_1}\oplus\cdots\oplus\mathbb{Z}_{p_k}\oplus\mathbb{Z}_{p_{k+1}}\oplus \cdots\oplus \mathbb{Z}_{p_{k+n}}$$
$$\mathbb{Z}_{p_1}\oplus\cdots\oplus\mathbb{Z}_{p_k}\oplus\mathbb{Z}_{p_{k+1}}\oplus \cdots\oplus \mathbb{Z}_{p_{k+n}}\cong A\oplus C$$
$$\mathbb{Z}_{p_1}\oplus\cdots\oplus\mathbb{Z}_{p_k} \oplus\mathbb{Z}_{p_{k+1}}\oplus \cdots\oplus \mathbb{Z}_{p_{k+n}}\cong \mathbb{Z}_{p_1}\oplus\cdots\oplus\mathbb{Z}_{p_k} \oplus \mathbb{Z}_{q_{1}}\oplus \cdots \oplus \mathbb{Z}_{q_{m}}$$
Since the number of terms and orders of each of the terms in the products on each side of the isomorphism are unique, it must be true that $n=m$ and it is possible to re-arrange the terms on the right so that $q_j=p_{k+j}$ for $1\leq j\leq n$, $j\in \mathbb{N}$. That means,
$$C\cong \mathbb{Z}_{p_{k+1}}\oplus \cdots\oplus \mathbb{Z}_{p_{k+n}}\cong B$$ and we are done.