0

Possible Duplicate:
Proving that the sequence $F_{n}(x)=\sum\limits_{k=1}^{n} \frac{\sin{kx}}{k}$ is boundedly convergent on $\mathbb{R}$

From Stewart, we cannot find a calculus 2 easy way to prove this:

$$\sum^{\infty}_{n=1}\frac{\sin[n]}{n}=\frac{1}{2}(\pi-1)$$

Kerry
  • 1

1 Answers1

0

$\sum\limits^{\infty}_{n=1}\dfrac{\sin{n\theta}}{n}$ is the Fourier series for $f(\theta)=\dfrac{\pi-\theta}{2}, \;\; 0<\theta<2\pi,$ and converges uniformly on every closed interval $[\alpha, \beta], \;\; 0<\alpha<\beta<2\pi$ by Dirichlet's test.

M. Strochyk
  • 8,397