Given three nonzero polynomials $a(x), b(x)$ and $c(x)$ satisfying $\gcd(a(x), b(x), c(x))=1$.
Please help me prove that there exists six polynomials $f(x), g(x), h(x), u(x), v(x), w(x)$ such that
$$\begin{vmatrix} a(x) & b(x) & c(x) \\ f(x) & g(x) & h(x) \\ u(x) & v(x) & w(x) \end{vmatrix}=1$$