$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\chi\pars{a} \equiv \lim_{n \to \infty}{\sum_{k = 1}^{n}k^{a} \over
\pars{n + 1}^{a - 1}\sum_{k = 1}^{n}\pars{na + k}} =
\lim_{n \to \infty}{\sum_{k = 1}^{n}k^{a} \over
\pars{n + 1}^{a - 1}\,n^{2}\bracks{a + 1/2 + 1/\pars{2n}}}
:\ {\large }}$
$\ds{\Large a < -1:}$
\begin{align}
&{\sum_{k = 1}^{n}k^{a} \over
\pars{n + 1}^{a - 1}\,n^{2}\bracks{a + 1/2 + 1/\pars{2n}}}
\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
{\zeta\pars{-a} \over a + 1/2}\,n^{-a - 1}
\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\to}\,\,\, -\infty
\\[5mm] & \implies
\bbx{\mbox{There}\ \mathbf{isn't}\ \mbox{any solution for}\ a < -1}
\end{align}
$\ds{\Large a = -1:}$
\begin{align}
&{\sum_{k = 1}^{n}k^{a} \over
\pars{n + 1}^{a - 1}\,n^{2}\bracks{a + 1/2 + 1/\pars{2n}}}
\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
-2\,H_{n}\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\to}\,\,\, -\infty
\\[5mm] & \implies
\bbx{a = - 1\quad \mathbf{isn't}\quad \mbox{a solution}}
\end{align}
$\ds{\Large -1 < a < 0:}$
\begin{align}
\sum_{k = 1}^{n}k^{a} & = \sum_{k = 1}^{n}{1 \over k^{-a}} =
{n^{1 + a} \over 1 + a} + \zeta\pars{-a} -
a\int_{n}^{\infty}{\braces{x} \over x^{-a + 1}}\,\dd x
\end{align}
Note that
$\ds{\int_{n}^{\infty}{\braces{x} \over x^{-a + 1}}\,\dd x < \int_{n}^{\infty}x^{a - 1}\,\dd x = -\,{1 \over an^{-a}}
\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\to}\,\,\, {\large 0} }$
\begin{align}
&{\sum_{k = 1}^{n}k^{a} \over
\pars{n + 1}^{a - 1}\,n^{2}\bracks{a + 1/2 + 1/\pars{2n}}}
\,\,\,\stackrel{\mrm{as}\ n\ \to\ \infty}{\to}\,\,\,
\left\{\begin{array}{lcl}
\ds{1 \over \pars{1 + a}\pars{a + 1/2}} & \mbox{if} &
\ds{a \not= -\,{1 \over 2}}
\\[2mm]
\ds{\infty} & \mbox{if} & \ds{a = -\,{1 \over 2}}
\end{array}\right.
\end{align}
$\ds{{1 \over \pars{1 + z}\pars{z + 1/2}} = {1 \over 60} \implies z = -\,{17 \over 2}\ \mbox{or}\ z = 7}$ but they don't belong to $\ds{\pars{-1,0}}$.
$\ds{\Large a = 0:}$ In this case, it's obvious that
$\ds{\chi\pars{0} = \infty}$.
$\ds{\Large a > 0:}$ The limit is
trivially reduced to the evaluation of two Riemann sums. Namely,
$$
{\int_{0}^{1}x^{a}\,\dd x \over \int_{0}^{1}\pars{a + x}\,\dd x} =
{1 \over \pars{a + 1}\pars{a + 1/2}} = {1 \over 60}
$$
It leads to the solution
$\bbox[10px,#ffe,border:1px dotted navy]{\Large\ds{a = 7}}$ because another
"possible" solution
$\ds{\pars{~z = \require{cancel}\cancel{-\,{17 \over 2}}~}}$ does not belong to $\ds{\pars{0,\infty}}$.