My book states that:
The inverse of a complex number $z = \rho \cdot cis \theta$, not zero, is a complex number $\color{red}{\text{$\frac{1}{z}= \frac{1}{\rho}\cdot cis(-\theta)$}}$.
I don't understand the red part. I tried:
$$\frac{1}{\rho \cdot cis(\theta)} = \frac{1}{\rho \cdot (\cos \theta+i\sin\theta)} = \frac{1}{\rho}\cdot\frac{1}{\cos \theta+i\sin\theta} = ???$$
What happens next?