This is my attempt
$$ \begin{align} x^2 - mx &= 1 \\ x^2 - mx - 1 &= 0 \\ \left(x^2 - mx + \frac{m^2}{4} - \frac{m^2}{4}\right) - 1 &= 0 \\ \left(x^2 - mx + \frac{m^2}{4}\right) - \frac{m^2}{4} - 1 &= 0 \\ \left(x^2 - mx + \frac{m^2}{4}\right) - \frac{m^2}{4} - \frac{4}{4} &= 0 \\ \left(x^2 - mx + \frac{m^2}{4}\right) - \frac{m^2 - 4}{4} &= 0 \\ \left(x^2 - mx + \frac{m^2}{4}\right) &= \frac{m^2 - 4}{4} \\ \left(x - \frac{m}{2}\right)^2 &= \frac{m^2 - 4}{4} \\ \sqrt{\left(x - \frac{m}{2}\right)^2} &= \sqrt{\frac{m^2 - 4}{4}} \\ x - \frac{m}{2} &= \pm \frac{\sqrt{m^2 - 4}}{\sqrt{4}} \\ x &= \frac{m}{2} \pm \frac{\sqrt{m^2 - 4}}{2} \\[20pt] x_1 &= \frac{m}{2} - \frac{\sqrt{m^2 - 4}}{2} \\ x_1 &= \frac{m - \sqrt{m^2 - 4}}{2} \\[16pt] x_2 &= \frac{m}{2} + \frac{\sqrt{m^2 - 4}}{2} \\ x_2 &= \frac{m + \sqrt{m^2 - 4}}{2} \\ \end{align} $$
However, the correct answer according to the text is:
$$ \begin{align} x_1 &= \frac{m}{2} - \frac{\sqrt{m^2 + 4}}{2} \\ x_2 &= \frac{m + \sqrt{m^2 + 4}}{2} \\ \end{align} $$
Why $\sqrt{m^2 + 4}$ instead of $\sqrt{m^2 - 4}$ ???