Try writing this as a series in two indeterminates $x$ and $y$ such that
$$H(x,y)=\sum_{n\ge 0}G_n(x)y^n=\sum_{k,n\ge 0}f(n,k)y^nx^k$$
$$\implies H(x,y)=\sum_{n\ge 0}f(n,0)y^n + \sum_{k\ge 1}f(0,k)x^k + \sum_{k,n\ge 1}f(n,k)y^nx^k$$
From the i.c's we get
$$H(x,y)=1+\sum_{k,n\ge 1}f(n,k)y^nx^k$$
and using $f(n,k)=f(n,k-1)-2f(n-1,k-1)$ we can write
$$\begin{align}H(x,y)&=1+\sum_{k,n\ge 1}\left(f(n,k-1)-2f(n-1,k-1)\right)y^nx^k\\
&=1+x\sum_{k,n\ge 1}f(n,k-1)y^nx^{k-1}-2xy\sum_{k,n\ge 1}f(n-1,k-1)y^{n-1}x^{k-1}\\
&=1+x\sum_{\begin{subarray}{c}k&\ge 0\\n&\ge 1\end{subarray}}f(n,k)y^nx^k-2xy\sum_{k,n\ge 0}f(n,k)y^nx^k\end{align}$$
Using our i.c $f(0,0)=1$ again gives
$$\begin{align}H(x,y)&=1+x\left(\sum_{k,n\ge 0}f(n,k)y^nx^k - 1\right) - 2xy\sum_{k,n\ge 0}f(n,k)y^nx^k\\
&=1-x+xH(x,y)-2xyH(x,y)\\
&=\frac{1-x}{1-x(1-2y)}=\left(1-\left(\frac{-2x}{1-x}\right)y\right)^{-1}\\
H(x,y)&=\sum_{n\ge 0}\left(\frac{-2x}{1-x}\right)^ny^n\\
H(x,y)&=\sum_{n\ge 0}G_n(x)y^n\end{align}$$
equating coefficients of $y^n$
$$G_n(x)=\frac{(-2)^nx^n}{(1-x)^n}$$
this can be written by expanding the negative binomial
$$\begin{align}G_n(x)&=(-2)^nx^n\sum_{k\ge 0}\binom{n+k-1}{n-1}x^k=\sum_{k\ge 0}(-2)^n\binom{n+k-1}{n-1}x^{n+k}\\ &= \sum_{k\ge n}(-2)^{n}\binom{k-1}{n-1}x^k\end{align}$$
$$\implies f(n,k)=(-2)^n\binom{k-1}{n-1}\tag{Answer}$$
check the recurrence
$$f(n,k-1)-2f(n-1,k-1)=(-2)^n\binom{k-2}{n-1}+(-2)^n\binom{k-2}{n-2}=(-2)^n\left(\binom{k-2}{n-1}+\binom{k-2}{n-2}\right)=(-2)^n\binom{k-1}{n-1}=f(n,k)$$
which (due to Pascal's identity) checks out.
$$\begin{array}{c}
\text{Table of values for $f(n,k)$}\\
\begin{array}{c|rrrrrrrr}
n \backslash k & 0 & 1 & 2 & 3 & 4 & 5 & 6&\cdots\\\hline
0&1 &0 &0 &0 &0 &0 &0&\cdots\\
1&0 &-2 &-2 &-2 &-2 &-2 &-2&\cdots\\
2&0 &0 &4 &8 &12 &16 &20&\cdots\\
3&0 &0 &0 &-8 &\bbox[aqua]{-24} &-48 &-80&\cdots\\
4&0 &0 &0 &0 &\bbox[yellow]{16} &\bbox[lime]{64} &160&\cdots\\
5&0 &0 &0 &0 &0 &-32 &-160&\cdots\\
6&0 &0 &0 &0 &0 &0 &64&\cdots\\
\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\ddots\\
\end{array}\\
\end{array}$$
e.g. For $n=4$ and $k=5$
$$\begin{split}f(n,k)&=f(n,&k-1)&\:-\:&2f(n-&1,k-1)\\
\bbox[lime]{\phantom{A}}\,&=\,&\bbox[yellow]{\phantom{A}}&\:-\:&2\,&\bbox[aqua]{\phantom{A}}\end{split}$$