Let $F$ be a field such that $char F=p\neq 0$, let $n>0$ and $m=p^n$ prove that $a^m+b^m=(a+b)^m$ for all $a,b\in F$
Attempt:
Since $a,b\in F$ then $a^m=(1\cdot a)^m=1^ma^m=0\cdot a^m=0$
and $b^m=(1\cdot b)^m=1^mb^m=0\cdot b^m=0\implies a^m+b^m=\color{red}0$
$(a+b)^m=[1\cdot (a+b)]^m=(1)^m(a+b)^m=0\cdot (a+b)^m=\color{red}0$