0

Let $F$ be a field such that $char F=p\neq 0$, let $n>0$ and $m=p^n$ prove that $a^m+b^m=(a+b)^m$ for all $a,b\in F$

Attempt:

Since $a,b\in F$ then $a^m=(1\cdot a)^m=1^ma^m=0\cdot a^m=0$

and $b^m=(1\cdot b)^m=1^mb^m=0\cdot b^m=0\implies a^m+b^m=\color{red}0$

$(a+b)^m=[1\cdot (a+b)]^m=(1)^m(a+b)^m=0\cdot (a+b)^m=\color{red}0$

Relatet, but not the same

Error 404
  • 1,892
  • 1
  • 11
  • 23

1 Answers1

0

Use induction on $n$. Suppose $a^m' + b^m' =(a+b)^m'$ then taking $p$th power and using binomial theorem on LHS we deduce the same holds for $pm$. For $m=p$ this is obvious since $p| pCi$ for all $0<i<p$