calculus.
Is $\sum_{n=2}^\infty \frac{n!}{(n-1)^n}$ convergent?
i tried ratio test and can't continue. I also tried the root test.
calculus.
Is $\sum_{n=2}^\infty \frac{n!}{(n-1)^n}$ convergent?
i tried ratio test and can't continue. I also tried the root test.
Ratio test: $$\lim_{n\to\infty}\dfrac{(n+1)!}{n^{n+1}}\cdot\dfrac{(n-1)^n}{n!}=\lim_{n\to\infty}\dfrac{n+1}{n}\cdot\left(\dfrac{n-1}{n}\right)^n=\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^n=e^{-1}<1$$