From integrals
$$\pi=\frac{24\sqrt{2}}{11} + \frac{8}{11} \int_0^1 \frac{x (1 - x)^2(1 + 2 \sqrt{2} x^4)}{1 + x^2 + x^4 + x^6} dx$$
and
$$\pi=\frac{20\sqrt{2}}{9} - \frac{2\sqrt{2}}{3} \int_0^1 \frac{x^4(1 - x)^4}{1 + x^2 + x^4 + x^6} dx$$
the following linear combination for Ramanujan's approximation $\pi\approx\frac{9801}{2206\sqrt{2}}$ is obtained:
$$\pi=\frac{9801}{2206\sqrt{2}} - \frac{1}{8824}\int_0^1 \frac{x (1 - x)^2 (124 (1 + 2 \sqrt{2} x^4) - 5769 \sqrt{2} x^3 (1 - x)^2)}{1 + x^2 + x^4 + x^6} dx$$
This integrand is small but has sign changes in $\left(0,1\right)$, so it does not provide a direct proof that $\pi<\frac{9801}{2206\sqrt{2}}$ such as Dalzell integral for $\pi<\frac{22}{7}$.
$$\pi = \frac{22}{7}-\int_0^1 \frac{x^4(1-x)^4}{1+x^2}dx$$
Is there an integral for $\frac{9801}{2206\sqrt{2}}-\pi$ with positive integrand?
Related questions
Why some curious almost-identities
Is there an integral that proves $\pi > 333/106$?
Is there an integral or series for $\frac{\pi}{3}-1-\frac{1}{15\sqrt{2}}$?
$$-\frac{1}{8824} \int_0^1 \sqrt{2}(-29341 + 23324 x - 5769 x^2) dx = \frac{9801}{2206\sqrt{2}}$$
with negative integrand in $(0,1)$. I understand the problem comes when adding up, because the absolute value of the positive one is not always larger than the negative...
– Jaume Oliver Lafont May 08 '17 at 19:49$$\pi=\frac{24\sqrt{2}}{11} + \frac{4\sqrt{2}}{11} \int_0^1 \left(4 (x - 2) + \frac{4 + \sqrt{2}}{1 + x^2} + \frac{(4 - \sqrt{2})(x^2 - x + 1)}{1 + x^4}\right) dx$$
$$\pi=\frac{20\sqrt{2}}{9} - \frac{2\sqrt{2}}{3} \int_0^1 \left(x^2 - 4 x + 5 -\frac{2}{1 + x^2} - \frac{3(x^2 - \frac{4}{3}x + 1)}{1 + x^4}\right) dx$$
– Jaume Oliver Lafont May 09 '17 at 07:12