It's obvious that $a_n>0$.
By AM-GM $$a_{n+1}=\frac{2}{3}a_n+\frac{1}{a_n}\geq2\sqrt{\frac{2}{3}a_n\cdot\frac{1}{a_n}}=\frac{2\sqrt2}{\sqrt3}>\frac{\sqrt{3}}{2}.$$
If $a_0>\sqrt3$ we obtain:
$$a_{n+1}-a_n=\frac{(\sqrt3-a_n)(\sqrt3+a_n)}{3a_n}<0$$
because $$a_{n+1}-\sqrt3=\frac{(a_n-\sqrt3)(2a_n-\sqrt3)}{3a_n}>0$$
by induction.
Thus, $a$ is a decreasing and $a_n>\sqrt3$.
Id est, there is a $\lim\limits_{n\rightarrow+\infty}a_n$.
Let $\lim\limits_{n\rightarrow+\infty}a_n=a$.
Thus, $a=\frac{2}{3}a+\frac{1}{a}$, which gives $a=\sqrt3$.
By the same way we can get that $a=\sqrt3$ for $0<a_0\leq\sqrt3$.