$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{u_{1} + u_{2} + u_{3} + u_{4} = 20\quad\mbox{where}\quad
1 \leq u_{i} \leq 5\,,\ i = 1,\ldots,4}$.
How do I solve this question $\ds{\underline{\texttt{step-by-step}}}$ ?.
The "$\ds{\underline{\texttt{step-by-step}}}$" answer is given by
\begin{align}
\sum_{u_{1} = 1}^{5}\sum_{u_{2} = 1}^{5}\sum_{u_{3} = 1}^{5}
\sum_{u_{4} = 1}^{5}
\overbrace{\qquad\qquad\bracks{z^{20}}z^{u_{1} + u_{2} + u_{3} + u_{4}}\qquad\qquad}
^{\ds{\substack{%
\ds{= 1}\,\,\, \mbox{if}\,\,\, u_{1} + u_{2} + u_{3} + u_{4} = 20
\\[2mm]
\ds{\ds{= 0}\,\,\, \mbox{otherwise}}}}}
\end{align}
The multiple sum adds $\ds{1}$ each time it encounters the case $\ds{u_{1} + u_{2} + u_{3} + u_{4} = 20}$. Otherwise, it adds 'nothing' which means it adds $\ds{0}$. That makes the whole job. Then,
\begin{align}
&\sum_{u_{1} = 1}^{5}\sum_{u_{2} = 1}^{5}\sum_{u_{3} = 1}^{5}
\sum_{u_{4} = 1}^{5}\bracks{z^{20}}z^{u_{1} + u_{2} + u_{3} + u_{4}} =
\bracks{z^{20}}\sum_{u_{1} = 1}^{5}z^{u_{1}}
\sum_{u_{2} = 1}^{5}z^{u_{2}}\sum_{u_{3} = 1}^{5}z^{u_{3}}
\sum_{u_{4} = 1}^{5}z^{u_{4}} =
\bracks{z^{20}}\pars{\sum_{u = 1}^{5}z^{u}}^{4}
\\[5mm] = &\
\bracks{z^{20}}\pars{z\,{z^{5} - 1 \over z - 1}}^{4} =
\bracks{z^{20}}z^{\color{red}{\large 4}}\,{\pars{1 - z^{5}}^{4} \over
\pars{1 - z}^{4}}
\\[5mm] = &\
\bracks{z^{20 - \color{#f00}{\large 4}}}\pars{1 - 4z^{\color{#f00}{5}} +
6z^{\color{#f00}{10}} - 4z^{\color{#f00}{15}} + z^{\color{#f00}{20}}}\pars{1 - z}^{-4}
\\[5mm] = &\
\bracks{z^{16}}\pars{1 - z}^{-4} -
4\bracks{z^{16 - \color{#f00}{5}}}\pars{1 - z}^{-4} +
6\bracks{z^{16 - \color{#f00}{10}}}\pars{1 - z}^{-4}
\\[2mm] - &\
4\bracks{z^{16 - \color{#f00}{15}}}\pars{1 - z}^{-4} +
\bracks{z^{16 - \color{#f00}{20}}}\pars{1 - z}^{-4}
\\[4mm] = &\
{-4 \choose 16}\pars{-1}^{16} - 4{-4 \choose 11}\pars{-1}^{11} +
6{-4 \choose 6}\pars{-1}^{6} - 4{-4 \choose 1}\pars{-1}^{1} +
{-4 \choose -4}\pars{-1}^{-4}
\\[5mm] = &
{19 \choose 3} - 4{14 \choose 11} + 6{9 \choose 6} -4{4 \choose 1} +
{1 \choose -4}
\\[5mm] = &\
969 - 4 \times 364 + 6 \times 84 - 4 \times 4 + 0 = \bbx{1}
\end{align}