I need to prove that if $f(a+b)=f(a)f(b)$ for any two real numbers $a$, $b$, and $f(0)=f'(0)=1$, then $f(x)=f'(x)$ for all real number $x$.
So here's what I tried but it didn't quite work and I can't find a way to get the desired result;
Let $x,c$ be any real number,
$f(x)=f((\frac{x}{2}+c)+(\frac{x}{2}-c))=f(\frac{x}{2}+c)f(\frac{x}{2}-c)$
$f'(x)=\frac{1}{2}f(\frac{x}{2}+c)f'(\frac{x}{2}-c) + \frac{1}{2}f(\frac{x}{2}-c)f'(\frac{x}{2}+c)$
Substitute $f'(0)=1$, we get $1=\frac{1}{2}f(c)f'(-c) + \frac{1}{2}f(-c)f'(c)$