$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\prod_{k = 1}^{N}{2k\pars{2k + 2} \over \pars{2k + 1}^{2}} =
\prod_{k = 1}^{N}{k\pars{k + 1} \over \pars{k + 1/2}\pars{k + 1/2}} =
{N! \over \pars{3/2}^{\overline{N}}}\,{\pars{N + 1}! \over \pars{3/2}^{\overline{N}}}
\\[5mm] = &\
\pars{N + 1}\,\bracks{N!\,{\Gamma\pars{3/2} \over \pars{N + 1/2}!}}^{2}\qquad\qquad\qquad
\pars{~\bbox[#ffd,15px]{\ds{\Gamma\pars{3 \over 2} = {1 \over 2}\,\Gamma\pars{1 \over 2} =
{\root{\pi} \over 2}}}~}
\\[5mm] \stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}\,\,\,&\
{\pi \over 4}\,\pars{N + 1}\,
\bracks{\root{2\pi}N^{N + 1/2}\expo{-N} \over
\root{2\pi}\pars{N + 1/2}^{N + 1}\expo{-\pars{N + 1/2}}}^{2}
\\[5mm] = &\
{\pi \over 4}\,\pars{N + 1}\,
\braces{{1 \over \root{N}}\,{\expo{1/2} \over
\bracks{1 + \pars{1/2}/N}^{\,N + 1}}}^{2}
\\[5mm] = &
{\pi \over 4}\,\pars{1 + {1 \over N}}\,\braces{{\expo{1/2} \over
\bracks{1 + \pars{1/2}/N}^{\,\,N}}}^{2}
\,\,\,\stackrel{\mrm{as}\ N\ \to\ \infty}{\to}\,\,\,
\bbx{\pi \over 4}
\end{align}