We find the null space by inspection. (Systematic methods are demonstrated in the linked pages below)
Given
$$
\mathbf{A} =
\left(
\begin{array}{cc}
0 & 0 \\
0 & 2 \\
\end{array}
\right)
$$
we note that
$$
\mathbf{A}
\left(
\begin{array}{cc}
1 \\
0 \\
\end{array}
\right)
=
\left(
\begin{array}{cc}
0 \\
0 \\
\end{array}
\right)
$$
Both $\color{red}{null}$ spaces are the same for your symmetric matrix:
$$
\color{red}{\mathcal{N}\left( \mathbf{A} \right)} = \color{red}{\mathcal{N}\left( \mathbf{A}^{*} \right)}
=\text{span }
%
\left\{ \,
\color{red}{\left(
\begin{array}{cc}
1 \\
0 \\
\end{array}
\right)}
\, \right\}
%
$$
Consider the linear system
$$
\begin{align}
\mathbf{A} x & = b \\
%
\left(
\begin{array}{cc}
0 & 0 \\
0 & 2 \\
\end{array}
\right)
%
\left(
\begin{array}{c}
x_{1} \\
x_{2} \\
\end{array}
\right)
%
&=
\left(
\begin{array}{c}
b_{1} \\
b_{2} \\
\end{array}
\right)
\end{align}
$$
and specify the data vector to classify the existence and uniqueness of solutions.
Existence and uniqueness
When the data vector has the form
$$
b = \left(
\begin{array}{c}
0 \\
b_{2} \\
\end{array}
\right)
$$
where $b_{2} \ne 0$, the solution exists and is unique. In fact, the solution is
$$
x=
\color{blue}{\left(
\begin{array}{c}
0 \\
\frac{1}{2} b_{2} \\
\end{array}
\right)}
$$
Existence without uniqueness
When the data vector has the form
$$
b = \left(
\begin{array}{c}
b_{1} \\
b_{2} \\
\end{array}
\right)
$$
where $b_{1} \ne 0$, and $b_{2} \ne 0$, the solution exists and is not unique.
The least squares solution is
$$
x_{LS} =
\color{blue}{\left(
\begin{array}{c}
0 \\
\frac{1}{2} b_{2} \\
\end{array}
\right)} +
\alpha
\color{red}{\left(
\begin{array}{c}
1 \\
0 \\
\end{array}
\right)}, \qquad \alpha\in \mathbb{C}
$$
No existence
When the data vector has the form
$$
b = \color{red}{\left(
\begin{array}{c}
b_{1} \\
0 \\
\end{array}
\right)}
$$
where $b_{1} \ne 0$, the solution does not exist.
Read more on MSE
Formal steps for computing null spaces:
Deriving left nullspace of matrix from EA=R,
Find base and dimension of given subspace