Is there a way to evaluate,
$$ \large \cos x \cdot \cos \frac{x}{2} \cdot \cos \frac{x}{4} ... \cdot \cos \frac{x}{2^{n-1}} \tag*{(1)} $$
I asked this to one of my teachers and what he told is something like this,
Multiply and divide the last term of $(1)$ with $\boxed{\sin \frac{x}{2^{n-1}}}$
So, $$ \large \frac{\cos \frac{x}{2^{n-1}} \cdot \sin \frac{x}{2^{n-1}}}{\sin \frac{x}{2^{n-1}}} \\ \tag*{(2)} $$ $$ \large \implies \frac{\sin (2x)}{2^n \cdot \sin \frac{x}{2^{n-1}}} \\ $$ $$ \large \implies \frac{\sin (2x)}{2^n \cdot \frac{\sin \frac{x}{2^{n-1}}}{\frac{x}{2^{n-1}}} \cdot \frac{x}{2^{n-1}}} \tag*{(3)} $$
Now, as $n \to \infty$ , we have $x \to 0$, Using this, $\lim$ we have,
$$ \boxed{ \lim_{x \to 0} \frac{\sin x}{x} = 1} $$
Using this in $(3)$, we have, $$ \large \boxed{\frac{\sin (2x)}{2x}} \tag*{(4)} $$
All the steps sort of make sense. My doubts are,
- How do I do this for other trigonometric ratios?
- How does the step 2 happen?
I need help looking into it more intuitionally.
Please provide necessary reading suggestions.
Regards.