How do I prove the following identity:
$$\sum_{r=1}^{m} \frac{(m+1)(r-1)m^{r-1}}{r {m \choose r}} = m^m -1$$
I tried using the method shown in this answer to get the following integral:
$$\frac{m+1}{m} \int_{0}^{1}(\frac{m^{m+1}(1-t)^{-1}t^{m-1}}{t(m+1)-1} + \frac{m(1-t)^{m-1}}{(t(m+1)-1)^2} + \frac{m^{m+1}t^m(1-t)^{-1}}{(t(m+1)-1)^2}) dt$$
But I have no idea on how to proceed from here.