Inasmuch as the OP states a preference of complex analysis, we proceed accordingly.
Let $I$ be given by
$$\begin{align}
I&=\int_0^1 \log(\sin(\pi x))\,dx\\\\
&=\frac{1}{\pi}\int_0^{\pi }\log(\sin(x))\,dx\tag 1
\end{align}$$
We use Euler's Formula to write $(1)$ as
$$\begin{align}
I&=\frac{1}{\pi}\int_0^{\pi }\log\left(\frac{e^{ix}-e^{-ix}}{2i}\right)\,dx\\\\
&=-\log(2)+\frac{1}{\pi}\lim_{\epsilon\to 0}\int_{\epsilon/2}^{\pi-\epsilon/2 }\log\left(1-e^{-i2x}\right)\,dx\\\\
&=-\log(2)+\frac{1}{2\pi }\int_{\epsilon}^{2\pi -\epsilon}\log(1-e^{i\theta})\,d\theta\tag2
\end{align}$$
Now, we enforce the substitution $z=e^{i\theta}$ so that $d\theta=\frac{1}{iz}\,dz$. The integration on the real line in $(2)$ transforms to contour integration in the $z$ plane defined by $|z|=1$, from $\arg(z) =\epsilon$ to $\arg(z)=2\pi -\epsilon$.
Then, $(2)$ can be written
$$\bbox[5px,border:2px solid #C0A000]{I=-\log(2)+\frac {1}{2\pi i}\int_{e^{i\epsilon}, |z|=1}^{e^{i(2\pi-\epsilon )}}\frac{\log(1-z)}{z}\,dz} \tag 3$$
In $(3)$ we tacitly cut the plane along the real axis from $z=1$ to $z=\infty$.
Note that $\frac{\log(1-z)}{z}$ is analytic within and on a closed ("Pac-Man") contour $C$ defined by $z=e^{i\theta}$ for $\epsilon \le \theta \le 2\pi -\epsilon$, and $z=1+2\sin(\epsilon/2) e^{i\nu}$ for $\pi/2 + \epsilon/2 \le \nu \le 3\pi/2 -\epsilon/2$.
Then, from Cauchy's Integral Theorem, we have $\oint_C \frac{\log(1-z)}{z}\,dz=0$, which implies
$$\begin{align}
\int_{e^{i\epsilon}, |z|=1}^{e^{i(2\pi-\epsilon )}}\frac{\log(1-z)}{z}\,dz&=-\int_{3\pi/2-\epsilon/2}^{\pi/2+\epsilon/2} \frac{\log(-2\sin(\epsilon/2) e^{i\nu})}{1+2\sin(\epsilon/2) e^{i\nu}}i2\sin(\epsilon/2) e^{i\nu}d\nu\tag4
\end{align}$$
As $\epsilon \to 0$ the term on the right-hand side of $(4)$ approaches $0$ since $\sin(\epsilon/2)\log (\sin(\epsilon/2)) \to 0$ as $\epsilon \to 0$.
Putting it all together, letting $\epsilon\to 0$ in $(3)$ and applying $(4)$ reveals that
$$\bbox[5px,border:2px solid #C0A000]{I=-\log(2)}$$