$\newcommand{\Number}[1]{\Bbb{#1}}$Let $$ \ell^2 = \left\{(x_i)_{i\in\Number{N}} \mid \text{$x_i\in\Number{R}$ for $i \in \Number{N}$; $\sum_{i=1}^\infty x_i^2<\infty$}\right\} $$ and let $$ d_2(x,y) = \left(\sum_{i=1}^\infty (x_i-y_i)^2\right)^{\frac{1}{2}};\quad x, y \in \ell^{2}. $$
How does one define (find) a bounded but not totally bounded subset?