I try to prove that statement using only Bachet-Bézout theorem (I know that it's not the best technique). So I get $k$ useful equations with $n_1$ then $(k-1)$ useful equations with $n_2$ ... then $1$ useful equation with $n_{k-1}$. I multiply all these equations to obtain $1$ for one side. For the other side I'm lost (there are too many terms) but I want to make appear the form $n_1 L_1+...+n_k L_k$.
Supposing the existence of all the integers we need :
$\underbrace{(a_1n_1+a_2n_2)(a_1n_1+a_3n_3)...(a_1n_1+a_kn_k)}_{\textit{k equations}} \underbrace{(b_2n_2+b_3n_3)...(b_2n_2+b_kn_k)}_{\textit{(k-1) equations}}...\underbrace{(\mu_{k-1} n_{k_1}+\mu_{k} n_k)}_{\textit{1 equation}}=1$
Maybe we can reduce the number of useful equations or start an induction to identify a better form for the product.
Thanks in advance !