Given two geometric random variables: $\; X_{j}\;$ for $\, j=1,2 \;$ with probability mass function $P(X_{1}=m)=P(X_{2}=m)=(1-q)^{m-1} \cdot q \,$ where $m=1,2,\dots \,$ and $0<q<1.$ Find the probability mass function $\, \mbox{max}(X_{1},X_{2}).$
First, can we assume that these random variables are independent? If so, is the probability mass function $\, \mbox{max}(X_{1},X_{2})$ equal to the following product $\mbox{max} \bigg((1-q)^{2m-2} \cdot q^{2} \bigg)?$